

A bouncy ball (0.50 kg) is dropped and strikes the ground with a velocity of 12 m/s. The floor applies a force of 400 N over a time period of .02 s. Find the impulse on the ball (magnitude and direction) and final velocity of the ball as it leaves the floor.

Impulse magnitude ______ direction _____

Final velocity magnitude _____ direction ___

impulse force time change in mass change in velocity

$$T = F\Delta t = \Delta p = M \Delta V = M(V_f - V_f)$$

impulse force time change in mass change in velocity

 $T = V_f = T_f$
 $T = F\Delta t$
 $T = T\Delta t$
 $T = T\Delta$

$$\frac{T}{m} - 12\% = \frac{T}{m} + \overline{v}_{1} = \overline{v}_{f}$$

$$\frac{8 kg \cdot m/s}{0.5 lg} - 12 m/s = \overline{v}_{f}$$

$$\overline{v}_{f} = 4 m/s$$

Dish A is dropped on a tile floor and dish B is dropped on carpet from equal heights. Both stop without rebounding.

Which one has a larger change in momentum? (A, B, same) $\frac{\text{SAME}}{\text{E}}$

Which one has a larger force acting on it? (A, B, same)

$$\Delta \bar{p} = \bar{p}_{t} - \bar{p}_{i}$$

$$= M \bar{v}_{t} - M \bar{v}_{i}$$

$$F\Delta t = \Delta \bar{p}$$

$$F = \Delta \bar{p}$$

